JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **26**, No. 4, November 2013 http://dx.doi.org/10.14403/jcms.2013.26.4.691

DOUBLE SEMIOPEN SETS ON DOUBLE BITOPOLOGICAL SPACES

EUN PYO LEE* AND SEUNG ON LEE**

ABSTRACT. We introduce the concepts of double bitopological spaces as a generalization of intuitionistic fuzzy topological spaces in Šostak's sense and Kandil's fuzzy bitopological spaces. Also we introduce the concept of $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiopen sets and double pairwise (r, s)(u, v)-semicontinuous mappings in double bitopological spaces and investigate some of their characteristic properties.

1. Introduction

Chang [2] defined fuzzy topological spaces. These spaces and its generalizations are later studied by several authors, one of which, developed by Šostak [12], used the idea of degree of openness. This type of generalization of fuzzy topological spaces was later rephrased by Chattopadhyay, Hazra, and Samanta [3], and by Ramadan [11].

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was introduced by Atanassov [1]. Çoker and his colleagues [4, 6, 7] introduced intuitionistic fuzzy topological spaces using intuitionistic fuzzy sets. Using the idea of degree of openness and degree of nonopenness, Çoker and M. Demirci [5] defined intuitionistic fuzzy topological spaces in Šostak's sense as a generalization of smooth fuzzy topological spaces and intuitionistic fuzzy topological spaces.

Kandil [8] introduced and studied the notion of fuzzy bitopological spaces as a natural generalization of fuzzy topological spaces.

In this paper, we introduce the concepts of double bitopological spaces as a generalization of intuitionistic fuzzy topological spaces in Šostak's

Received May 05, 2013; Accepted August 01, 2013.

²⁰¹⁰ Mathematics Subject Classification: Primary 54A40, 03E72.

Key words and phrases: double (r, s)(u, v)-semiopen, double pairwise (r, s)(u, v)-semicontinuous.

Correspondence should be addressed to Seung On Lee, solee@chungbuk.ac.kr.

This work was supported by the research grant of the Chungbuk National University in 2012.

sense and Kandil's fuzzy bitopological spaces. We also introduce the concept of $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiopen ((r, s)(u, v)-semiclosed) sets and double pairwise (r, s)(u, v)-semicontinuous ((r, s)(u, v)-semiclosed, respectively) mappings in double bitopological spaces and investigate some of their characteristic properties.

2. Preliminaries

Let I be the unit interval [0,1] of the real line. A member μ of I^X is called a fuzzy set of X. For any $\mu \in I^X$, μ^c denotes the complement $1 - \mu$. By $\tilde{0}$ and $\tilde{1}$ we denote constant maps on X with value 0 and 1, respectively. All other notations are standard notations of fuzzy set theory.

Let X be a nonempty set. An *intuitionistic fuzzy set* A is an ordered pair

$$A = (\mu_A, \gamma_A)$$

where the functions $\mu_A : X \to I$ and $\gamma_A : X \to I$ denote the degree of membership and the degree of nonmembership, respectively, and $\mu_A + \gamma_A \leq \tilde{1}$.

Obviously every fuzzy set μ on X is an intuitionistic fuzzy set of the form $(\mu, \tilde{1} - \mu)$.

DEFINITION 2.1. [1] Let A and B be intuitionistic fuzzy sets on X. Then

- (1) $A \subseteq B$ iff $\mu_A \leq \mu_B$ and $\gamma_A \geq \gamma_B$. (2) A = B iff $A \subseteq B$ and $B \subseteq A$.
- $(3) \quad A^c = (\gamma_A, \mu_A).$
- (4) $A \cap B = (\mu_A \wedge \mu_B, \gamma_A \vee \gamma_B).$
- (5) $A \cup B = (\mu_A \vee \mu_B, \gamma_A \wedge \gamma_B).$
- (6) $0_{\sim} = (\tilde{0}, \tilde{1})$ and $1_{\sim} = (\tilde{1}, \tilde{0})$.

Let f be a mapping from a set X to a set Y. Let $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy set of X and $B = (\mu_B, \gamma_B)$ an intuitionistic fuzzy set of Y. Then:

(1) The image of A under f, denoted by f(A), is an intuitionistic fuzzy set in Y defined by

$$f(A) = (f(\mu_A), \tilde{1} - f(\tilde{1} - \gamma_A)).$$

(2) The inverse image of B under f, denoted by $f^{-1}(B)$, is an intuitionistic fuzzy set in X defined by

$$f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B)).$$

A smooth fuzzy topology on X is a map $T: I^X \to I$ which satisfies the following properties:

- (1) $T(\tilde{0}) = T(\tilde{1}) = 1.$
- (2) $T(\mu_1 \wedge \mu_2) \ge T(\mu_1) \wedge T(\mu_2).$
- (3) $T(\bigvee \mu_i) \ge \bigwedge T(\mu_i).$

The pair (X,T) is called a smooth fuzzy topological space.

An *intuitionistic fuzzy topology* on X is a family T of intuitionistic fuzzy sets in X which satisfies the following properties:

- (1) $0_{\sim}, 1_{\sim} \in T$.
- (2) If $A_1, A_2 \in T$, then $A_1 \cap A_2 \in T$.
- (3) If $A_i \in T$ for all i, then $\bigcup A_i \in T$.

The pair (X,T) is called an *intuitionistic fuzzy topological space*.

Let I(X) be a family of all intuitionistic fuzzy sets of X and let $I \otimes I$ be the set of the pair (r, s) such that $r, s \in I$ and $r + s \leq 1$.

DEFINITION 2.2. [12] Let X be a nonempty set. An intuitionistic fuzzy topology in Šostak's sense $\mathcal{T}^{\mu\gamma} = (\mathcal{T}^{\mu}, \mathcal{T}^{\gamma})$ on X is a mapping $\mathcal{T}^{\mu\gamma} : I(X) \to I \otimes I(\mathcal{T}^{\mu}, \mathcal{T}^{\gamma} : I(X) \to I)$ which satisfies the following properties:

- (1) $\mathcal{T}^{\mu}(0_{\sim}) = \mathcal{T}^{\mu}(1_{\sim}) = 1$ and $\mathcal{T}^{\gamma}(0_{\sim}) = \mathcal{T}^{\gamma}(1_{\sim}) = 0.$
- (2) $\mathcal{T}^{\mu}(A \cap B) \geq \mathcal{T}^{\mu}(A) \wedge \mathcal{T}^{\mu}(B) \text{ and } \mathcal{T}^{\gamma}(A \cap B) \leq \mathcal{T}^{\gamma}(A) \vee \mathcal{T}^{\gamma}(B).$ (3) $\mathcal{T}^{\mu}(\bigcup A_i) \geq \bigwedge \mathcal{T}^{\mu}(A_i) \text{ and } \mathcal{T}^{\gamma}(\bigcup A_i) \leq \bigvee \mathcal{T}^{\gamma}(A_i).$

The $(X, \mathcal{T}^{\mu\gamma}) = (X, \mathcal{T}^{\mu}, \mathcal{T}^{\gamma})$ is said to be an intuitionistic fuzzy topological space in Šostak's sense. Also, we call $\mathcal{T}^{\mu}(A)$ a gradation of openness of A and $\mathcal{T}^{\gamma}(A)$ a gradation of nonopenness of A.

DEFINITION 2.3. [10] Let A be an intuitionistic fuzzy set in an intuitionistic fuzzy topological space in Šostak's sense $(X, \mathcal{T}^{\mu}, \mathcal{T}^{\gamma})$ and $(r, s) \in I \otimes I$. Then A is said to be

- (1) a $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-open set if $\mathcal{T}^{\mu}(A) \geq r$ and $\mathcal{T}^{\gamma}(A) \leq s$,
- (2) a $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-closed set if $\mathcal{T}^{\mu}(A^c) \ge r$ and $\mathcal{T}^{\gamma}(A^c) \le s$.

Let $(X, \mathcal{T}^{\mu}, \mathcal{T}^{\gamma})$ be an intuitionistic fuzzy topological space in Šostak's sense. For each $(r, s) \in I \otimes I$ and for each $A \in I(X)$, the $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-closure is defined by

$$\mathcal{T}^{\mu\gamma}\text{-}\mathrm{cl}(A, r, s)$$

= $\bigcap \{B \in I(X) \mid A \subseteq B, B \text{ is } \mathcal{T}^{\mu\gamma}\text{-}\mathrm{fuzzy } (r, s)\text{-}\mathrm{closed}\}$

and the $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-interior is defined by

$$\begin{split} \mathcal{T}^{\mu\gamma}\text{-}\mathrm{int}(A,r,s) \\ &= \bigcup\{B\in I(X)\mid A\supseteq B,B \text{ is }\mathcal{T}^{\mu\gamma}\text{-}\mathrm{fuzzy }(r,s)\text{-}\mathrm{open}\}. \end{split}$$

LEMMA 2.4. [10] For an intuitionistic fuzzy set A in an intuitionistic fuzzy topological space in Šostak's sense $(X, \mathcal{T}^{\mu}, \mathcal{T}^{\gamma})$ and $(r, s) \in I \otimes I$, we have:

- (1) $\mathcal{T}^{\mu\gamma}$ -cl $(A, r, s)^c = \mathcal{T}^{\mu\gamma}$ -int (A^c, r, s) .
- (2) $\mathcal{T}^{\mu\gamma}$ -int $(A, r, s)^c = \mathcal{T}^{\mu\gamma}$ -cl (A^c, r, s) .

A system $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ consisting of a set X with two intuitionistic fuzzy topologies in Šostak's sense $\mathcal{T}^{\mu\gamma}$ and $\mathcal{U}^{\mu\gamma}$ on X is called a *double bitopological space*.

Let $(X, \mathcal{T}^{\mu\gamma})$ be an intuitionistic fuzzy topological space in Šostak's sense. Then it is easy to see that for each $(r, s) \in I \otimes I$, the family $(\mathcal{T}^{\mu\gamma})_{(r,s)}$ defined by

$$(\mathcal{T}^{\mu\gamma})_{(r,s)} = \{A \in I(X) \mid \mathcal{T}^{\mu}(A) \ge r \text{ and } \mathcal{T}^{\gamma}(A) \le s\}$$

is an intuitionistic fuzzy topology on X.

Let (X,T) be an intuitionistic fuzzy topological space and $(r,s) \in I \otimes I$. Then the map $T_{(r,s)}^{\mu\gamma} : I(X) \to I \otimes I$ defined by

$$T^{\mu\gamma}_{(r,s)}(A) = \begin{cases} (1,0) & \text{if } A = 0_{\sim}, 1_{\sim} \\ (r,s) & \text{if } A \in T - \{0_{\sim}, 1_{\sim}\} \\ (0,1) & \text{otherwise} \end{cases}$$

becomes an intuitionistic fuzzy topology in Sostak's sense on X.

Hence, we have that if $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ is a double bitopological space and $(r, s), (u, v) \in I \otimes I$, then $(X, (\mathcal{T}^{\mu\gamma})_{(r,s)}, (\mathcal{U}^{\mu\gamma})_{(u,v)})$ is an intuitionistic fuzzy bitopological space. Also, if (X, T, U) is an intuitionistic fuzzy bitopological space and $(r, s), (u, v) \in I \otimes I$, then $(X, (T)_{(r,s)}^{\mu\gamma}, (U)_{(u,v)}^{\mu\gamma})$ is a double bitopological space.

3. $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiopen sets

DEFINITION 3.1. Let A be an intuitionistic fuzzy set of a double bitopological space $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ and $(r, s), (u, v) \in I \otimes I$. Then A is said to be

- (1) a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiopen set if there is a $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-open set B in X such that $B \subseteq A \subseteq \mathcal{U}^{\mu\gamma}$ -cl(B, u, v),
- (2) a $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiopen set if there is a $\mathcal{U}^{\mu\gamma}$ -fuzzy (u, v)-open set B in X such that $B \subseteq A \subseteq \mathcal{T}^{\mu\gamma}$ -cl(B, r, s),
- (3) a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiclosed set if there is a $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-closed set B in X such that $\mathcal{U}^{\mu\gamma}$ -int $(B, u, v) \subseteq A \subseteq B$.
- (4) a $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiclosed set if there is a $\mathcal{U}^{\mu\gamma}$ -fuzzy (u, v)-closed set B in X such that $\mathcal{T}^{\mu\gamma}$ -int $(B, r, s) \subseteq A \subseteq B$.

THEOREM 3.2. Let A be an intuitionistic fuzzy set of a double bitopological space $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ and $(r, s), (u, v) \in I \otimes I$. Then the following statements are equivalent:

- (1) A is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiopen set.
- (2) A^c is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiclosed set.
- (3) $\mathcal{U}^{\mu\gamma}$ -cl $(\mathcal{T}^{\mu\gamma}$ -int $(A, r, s), u, v) \supseteq A$.
- (4) $\mathcal{U}^{\mu\gamma}$ -int $(\mathcal{T}^{\mu\gamma}$ -cl $(A^c, r, s), u, v) \subseteq A^c$.

Proof. (1) \Rightarrow (3) Let A be a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiopen set of X. Then there is a $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-open set B in X such that $B \subseteq A \subseteq \mathcal{U}^{\mu\gamma}$ -cl(B, u, v). Since $B \subseteq A$, we have

$$B = \mathcal{T}^{\mu\gamma}\operatorname{-int}(B, r, s) \subseteq \mathcal{T}^{\mu\gamma}\operatorname{-int}(A, r, s).$$

Hence $A \subseteq \mathcal{U}^{\mu\gamma}$ -cl $(B, u, v) \subseteq \mathcal{U}^{\mu\gamma}$ -cl $(\mathcal{T}^{\mu\gamma}$ -int(A, r, s), u, v). (3) \Rightarrow (1) Let $\mathcal{U}^{\mu\gamma}$ -cl $(\mathcal{T}^{\mu\gamma}$ -int $(A, r, s), u, v) \supseteq A$. Suppose that B =

 $\mathcal{T}^{\mu\gamma}$ -int(A, r, s). Then B is a $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-open set and

$$B = \mathcal{T}^{\mu\gamma}\operatorname{-int}(A, r, s) \subseteq A \subseteq \mathcal{U}^{\mu\gamma}\operatorname{-cl}(\mathcal{T}^{\mu\gamma}\operatorname{-int}(A, r, s), u, v)$$
$$= \mathcal{U}^{\mu\gamma}\operatorname{-cl}(B, u, v).$$

Thus A is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiopen set.

(1)
$$\Leftrightarrow$$
 (2) and (3) \Leftrightarrow (4) follow from Lemma 2.4.

COROLLARY 3.3. Let A be an intuitionistic fuzzy set of a double bitopological space $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ and $(r, s), (u, v) \in I \otimes I$. Then the following statements are equivalent:

(1) A is a $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiopen set.

(2) A^c is a $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiclosed set.

(3) $\mathcal{T}^{\mu\gamma}$ - $cl(\mathcal{U}^{\mu\gamma}$ - $int(A, u, v), r, s) \supseteq A.$

(4) $\mathcal{T}^{\mu\gamma}$ -int $(\mathcal{U}^{\mu\gamma}$ -cl $(A^c, u, v), r, s) \subseteq A^c$.

THEOREM 3.4. Let $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ be a double fuzzy topological space and $(r, s), (u, v) \in I \otimes I$.

- (1) Suppose that A is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiopen set. If $\mathcal{T}^{\mu\gamma}$ -int $(A, r, s) \subseteq B \subseteq \mathcal{U}^{\mu\gamma}$ -cl(A, u, v), then B is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiopen set.
- (2) Suppose that A is a $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiopen set. If $\mathcal{U}^{\mu\gamma}$ -int $(A, u, v) \subseteq B \subseteq \mathcal{T}^{\mu\gamma}$ -cl(A, r, s), then B is a $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiopen set.
- (3) Suppose that A is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiclosed set. If $\mathcal{U}^{\mu\gamma}$ -int $(A, u, v) \subseteq B \subseteq \mathcal{T}^{\mu\gamma}$ -cl(A, r, s), then B is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiclosed set.
- (4) Suppose that A is a $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiclosed set. If $\mathcal{T}^{\mu\gamma}$ -int $(A, r, s) \subseteq B \subseteq \mathcal{U}^{\mu\gamma}$ -cl(A, u, v), then B is a $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiclosed set.

Proof. (1) Let A be a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiopen set and $\mathcal{T}^{\mu\gamma}$ -int $(A, r, s) \subseteq B \subseteq \mathcal{U}^{\mu\gamma}$ -cl(A, u, v). Then there is a $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-open set C such that $C \subseteq A \subseteq \mathcal{U}^{\mu\gamma}$ -cl(C, u, v). It follows that

$$C = \mathcal{T}^{\mu\gamma}\operatorname{-int}(C, r, s) \subseteq \mathcal{T}^{\mu\gamma}\operatorname{-int}(A, r, s)$$
$$\subseteq B$$
$$\subseteq \mathcal{U}^{\mu\gamma}\operatorname{-cl}(A, u, v)$$
$$\subseteq \mathcal{U}^{\mu\gamma}\operatorname{-cl}(\mathcal{U}^{\mu\gamma}\operatorname{-cl}(C, u, v), u, v)$$
$$= \mathcal{U}^{\mu\gamma}\operatorname{-cl}(C, u, v).$$

Hence C is a $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-open set and $C \subseteq B \subseteq \mathcal{U}^{\mu\gamma}$ -cl(C, u, v). Thus B is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiopen set.

(2) Similar to (1)

(3) Suppose that A be a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiclosed set and $\mathcal{U}^{\mu\gamma}$ -int $(A, u, v) \subseteq B \subseteq \mathcal{T}^{\mu\gamma}$ -cl(A, r, s). Then there is a $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-closed set C such that $\mathcal{U}^{\mu\gamma}$ -int $(C, u, v) \subseteq A \subseteq C$. It follows that

$$\mathcal{U}^{\mu\gamma}\operatorname{-int}(C, u, v) = \mathcal{U}^{\mu\gamma}\operatorname{-int}(\mathcal{U}^{\mu\gamma}\operatorname{-int}(C, u, v), u, v)$$

$$\subseteq \mathcal{U}^{\mu\gamma}\operatorname{-int}(A, u, v)$$

$$\subseteq B$$

$$\subseteq \mathcal{T}^{\mu\gamma}\operatorname{-cl}(A, r, s)$$

$$\subseteq \mathcal{T}^{\mu\gamma}\operatorname{-cl}(C, r, s)$$

$$= C.$$

Hence C is a $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-closed set and $\mathcal{U}^{\mu\gamma}$ -int $(C, u, v) \subseteq B \subseteq C$. Thus B is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiclosed set. (4) Similar to (3)

It is obvious that every $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-open ((r, s)-closed) set is a $\mathcal{T}^{\mu\gamma}$ $\mathcal{U}^{\mu\gamma}$ double (r, s)(u, v) semiclosed) set and

 $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiopen ((r, s)(u, v)-semiclosed) set and every $\mathcal{U}^{\mu\gamma}$ -fuzzy (u, v)-open ((u, v)-closed) set is a $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiopen ((u, v)(r, s)-semiclosed) set but the converses need not be true which is shown by the following example.

EXAMPLE 3.5. Let $X = \{x, y\}$ and let A_1, A_2, A_3 and A_4 be intuitionistic fuzzy sets of X defined as

$$A_1(x) = (0.0, 0.7), \quad A_1(y) = (0.4, 0.3);$$

 $A_2(x) = (0.5, 0.2), \quad A_2(y) = (0.6, 0.1);$
 $A_3(x) = (0.1, 0.4), \quad A_3(y) = (0.7, 0.1);$

and

$$A_4(x) = (0.6, 0.1), \quad A_4(y) = (0.8, 0.0).$$

Define $\mathcal{T}^{\mu\gamma} : I(X) \to I \otimes I$ and $\mathcal{U}^{\mu\gamma} : I(X) \to I \otimes I$ by

$$\mathcal{T}^{\mu\gamma}(A) = (\mathcal{T}^{\mu}(A), \mathcal{T}^{\gamma}(A)) = \begin{cases} (1,0) & \text{if } A = 0_{\sim}, 1_{\sim}, \\ (\frac{1}{2}, \frac{1}{5}) & \text{if } A = A_1, \\ (0,1) & \text{otherwise;} \end{cases}$$

and

$$\mathcal{U}^{\mu\gamma}(A) = (\mathcal{U}^{\mu}(A), \mathcal{U}^{\gamma}(A)) = \begin{cases} (1,0) & \text{if } A = 0_{\sim}, 1_{\sim}, \\ (\frac{1}{3}, \frac{1}{4}) & \text{if } A = A_2, \\ (0,1) & \text{otherwise.} \end{cases}$$

Then clearly $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ is a double bitopological space on X. Since

$$\mathcal{U}^{\mu\gamma} - cl(\mathcal{T}^{\mu\gamma} - int(A_3, \frac{1}{2}, \frac{1}{5}), \frac{1}{3}, \frac{1}{4}) = \mathcal{U}^{\mu\gamma} - cl(A_1, \frac{1}{3}, \frac{1}{4})$$

= 1~
 $\supseteq A_3,$

the intuitionistic fuzzy set A_3 is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double $(\frac{1}{2}, \frac{1}{5})(\frac{1}{3}, \frac{1}{4})$ -semiopen set which is not a $\mathcal{T}^{\mu\gamma}$ -fuzzy $(\frac{1}{2}, \frac{1}{5})$ -open set. Also, A_3^c is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ double $(\frac{1}{2}, \frac{1}{5})(\frac{1}{3}, \frac{1}{4})$ -semiclosed set which is not a $\mathcal{T}^{\mu\gamma}$ -fuzzy $(\frac{1}{2}, \frac{1}{5})$ -closed set. Since

$$\mathcal{T}^{\mu\gamma}\text{-}cl(\mathcal{U}^{\mu\gamma}\text{-}int(A_4,\frac{1}{3},\frac{1}{4}),\frac{1}{2},\frac{1}{5}) = \mathcal{T}^{\mu\gamma}\text{-}cl(A_2,\frac{1}{2},\frac{1}{5}) = 1_{\sim} \supseteq A_4,$$

the intuitionistic fuzzy set A_4 is a $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double $(\frac{1}{3}, \frac{1}{4})(\frac{1}{2}, \frac{1}{5})$ -semiopen set which is not a $\mathcal{U}^{\mu\gamma}$ -fuzzy $(\frac{1}{3}, \frac{1}{4})$ -open set. Also, A_4^c is a $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ double $(\frac{1}{3}, \frac{1}{4})(\frac{1}{2}, \frac{1}{5})$ -semiclosed set which is not a $\mathcal{U}^{\mu\gamma}$ -fuzzy $(\frac{1}{3}, \frac{1}{4})$ -closed set.

THEOREM 3.6. Let $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ be a double bitopological space and $(r, s), (u, v) \in I \otimes I$.

- (1) If $\{A_k\}$ is a family of $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiopen sets of X, then $\bigcup A_k$ is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiopen set.
- (2) If $\{A_k\}$ is a family of $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiopen sets of X, then $\bigcup A_k$ is a $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiopen set.
- (3) If $\{A_k\}$ is a family of $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiclosed sets of X, then $\bigcap A_k$ is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiclosed set.
- (4) If $\{A_k\}$ is a family of $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiclosed sets of X, then $\bigcap A_k$ is a $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiclosed set.

Proof. (1) Let $\{A_k\}$ be a collection of $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)semiopen sets. Then for each k, there is a $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-open set B_k such that $B_k \subseteq A_k \subseteq \mathcal{U}^{\mu\gamma}$ -cl (B_k, u, v) . Since B_k is $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-open, $\mathcal{T}^{\mu}(B_k) \ge r$ and $\mathcal{T}^{\gamma}(B_k) \le s$ for each k. So $\mathcal{T}^{\mu}(\bigcup B_k) \ge \bigwedge \mathcal{T}^{\mu}(B_k) \ge r$ and $\mathcal{T}^{\gamma}(\bigcup B_k) \le \bigvee \mathcal{T}^{\gamma}(B_k) \le s$. Hence $\bigcup B_k$ is a $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-open set. Also, we have

$$\bigcup B_k \subseteq \bigcup A_k \subseteq \bigcup \mathcal{U}^{\mu\gamma} \text{-cl}(B_k, u, v)$$
$$\subseteq \mathcal{U}^{\mu\gamma} \text{-cl}(\bigcup B_k, u, v).$$

Hence $\bigcup B_k$ is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiopen set.

(2) Let $\{A_k\}$ be a collection of $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiopen sets. Then for each k, there is a $\mathcal{U}^{\mu\gamma}$ -fuzzy (u, v)-open set B_k such that $B_k \subseteq A_k \subseteq \mathcal{T}^{\mu\gamma}$ -cl (B_k, r, s) . Since B_k is $\mathcal{U}^{\mu\gamma}$ -fuzzy (u, v)-open, $\mathcal{U}^{\mu}(B_k) \ge u$ and $\mathcal{U}^{\gamma}(B_k) \le v$ for each k. So $\mathcal{U}^{\mu}(\bigcup B_k) \ge \bigwedge \mathcal{U}^{\mu}(B_k) \ge u$ and $\mathcal{U}^{\gamma}(\bigcup B_k) \le \bigvee \mathcal{U}^{\gamma}(B_k) \le v$. Hence $\bigcup B_k$ is a $\mathcal{U}^{\mu\gamma}$ -fuzzy (u, v)-open set. Also, we have

$$\bigcup B_k \subseteq \bigcup A_k \subseteq \bigcup \mathcal{T}^{\mu\gamma} \text{-} \text{cl}(B_k, r, s)$$
$$\subseteq \mathcal{T}^{\mu\gamma} \text{-} \text{cl}(\bigcup B_k, r, s).$$

Hence $\bigcup B_k$ is a $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiopen set.

- (3) It follows from (1) using Theorem 3.2.
- (4) It follows from (2) using Corollary 3.3

Let $f: (X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma}) \to (Y, \mathcal{V}^{\mu\gamma}, \mathcal{W}^{\mu\gamma})$ be a mapping from a double bitopological space X to a double bitopological space Y and $(r, s), (u, v) \in I \otimes I$. Then f is called a *double pairwise* (r, s)(u, v)-continuous ((r, s)(u, v)open and (r, s)(u, v)-closed, respectively) mapping if the induced mapping $f: (X, \mathcal{T}^{\mu\gamma}) \to (Y, \mathcal{V}^{\mu\gamma})$ is fuzzy (r, s)-continuous ((r, s)-open and (r, s)-closed, respectively) and the induced mapping $f: (X, \mathcal{U}^{\mu\gamma}) \to (Y, \mathcal{W}^{\mu\gamma})$ is fuzzy (u, v)-continuous ((u, v)-open and (u, v)-closed, respectively).

DEFINITION 3.7. Let $f : (X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma}) \to (Y, \mathcal{V}^{\mu\gamma}, \mathcal{W}^{\mu\gamma})$ be a mapping from a double bitopological space X to a double bitopological space Y and $(r, s), (u, v) \in I \otimes I$. Then f is called

- (1) double pairwise (r, s)(u, v)-semicontinuous if $f^{-1}(A)$ is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ double (r, s)(u, v)-semiopen set of X for each $\mathcal{V}^{\mu\gamma}$ -fuzzy (r, s)-open set A of Y and $f^{-1}(B)$ is a $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiopen set of X for each $\mathcal{W}^{\mu\gamma}$ -fuzzy (u, v)-open set B of Y,
- (2) double pairwise (r, s)(u, v)-semiopen if f(C) is a (V^{μγ}, W^{μγ})-double (r, s)(u, v)-semiopen set of Y for each T^{μγ}-fuzzy (r, s)-open set C of X and f(D) is a (W^{μγ}, V^{μγ})-double (u, v)(r, s)-semiopen set of Y for each U^{μγ}-fuzzy (u, v)-open set D of X,
- (3) double pairwise (r, s)(u, v)-semiclosed if f(C) is a (V^{μγ}, W^{μγ})-double (r, s)(u, v)-semiclosed set of Y for each T^{μγ}-fuzzy (r, s)-closed set C of X and f(D) is a (W^{μγ}, V^{μγ})-double (u, v)(r, s)-semiclosed set of Y for each U^{μγ}-fuzzy (u, v)-closed set D of X.

THEOREM 3.8. Let $f: (X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma}) \to (Y, \mathcal{V}^{\mu\gamma}, \mathcal{W}^{\mu\gamma})$ be a mapping and $(r, s), (u, v) \in I \otimes I$. Then the following statements are equivalent:

- (1) f is a double pairwise (r, s)(u, v)-semicontinuous mapping.
- (2) f⁻¹(A) is a (*T^{μγ}, U^{μγ}*)-double (r, s)(u, v)-semiclosed set of X for each *V^{μγ}*-fuzzy (r, s)-closed set A of Y and f⁻¹(B) is a (*U^{μγ}, T^{μγ}*)double (u, v)(r, s)-semiclosed set of X for each *W^{μγ}*-fuzzy (u, v)closed set B of Y.
- (3) $\mathcal{U}^{\mu\gamma}$ -int $(\mathcal{T}^{\mu\gamma}$ -cl $(f^{-1}(A), r, s), u, v) \subseteq f^{-1}(\mathcal{V}^{\mu\gamma}$ -cl(A, r, s)) and $\mathcal{T}^{\mu\gamma}$ -int $(\mathcal{U}^{\mu\gamma}$ -cl $(f^{-1}(A), u, v), r, s) \subseteq f^{-1}(\mathcal{W}^{\mu\gamma}$ -cl(A, u, v)) for each intuitionistic fuzzy set A of Y.
- (4) $f(\mathcal{U}^{\mu\gamma}\text{-}\operatorname{int}(\mathcal{T}^{\mu\gamma}\text{-}\operatorname{cl}(C, r, s), u, v) \subseteq \mathcal{V}^{\mu\gamma}\text{-}\operatorname{cl}(f(C), r, s)$ and $f(\mathcal{T}^{\mu\gamma}\text{-}\operatorname{int}(\mathcal{U}^{\mu\gamma}\text{-}\operatorname{cl}(C, u, v), r, s) \subseteq \mathcal{W}^{\mu\gamma}\text{-}\operatorname{cl}(f(C), u, v)$ for each intuitionistic fuzzy set C of X.

Proof. (1) \Rightarrow (2) Let A be any $\mathcal{V}^{\mu\gamma}$ -fuzzy (r, s)-closed set and B any $\mathcal{W}^{\mu\gamma}$ -fuzzy (u, v)-closed set of Y. Then A^c is a $\mathcal{V}^{\mu\gamma}$ -fuzzy (r, s)-open set and B^c is a $\mathcal{W}^{\mu\gamma}$ -fuzzy (u, v)-open set of Y. Since f is double pairwise

Eun Pyo Lee and Seung On Lee

(r,s)(u,v)-semicontinuous, $f^{-1}(A^c)$ is a $(\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})$ -double (r,s)(u,v)semiopen set and $f^{-1}(B^c)$ is a $(\mathcal{U}^{\mu\gamma},\mathcal{T}^{\mu\gamma})$ -double (u,v)(r,s)-semiopen
set of X. But $f^{-1}(A^c) = f^{-1}(A)^c$ and $f^{-1}(B^c) = f^{-1}(B)^c$. By Theorem 3.2 and Corollary 3.3, $f^{-1}(A)$ is a $(\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})$ -double (r,s)(u,v)semiclosed set and $f^{-1}(B)$ is a $(\mathcal{U}^{\mu\gamma},\mathcal{T}^{\mu\gamma})$ -double (u,v)(r,s)-semiclosed
set of X.

 $\begin{array}{l} (2) \Rightarrow (1) \mbox{ Let } A \mbox{ be any } \mathcal{V}^{\mu\gamma}\mbox{-fuzzy } (r,s)\mbox{-open set and } B \mbox{ any } \mathcal{W}^{\mu\gamma}\mbox{-fuzzy } (u,v)\mbox{-open set of } Y. \mbox{ Then } A^c \mbox{ is a } \mathcal{V}^{\mu\gamma}\mbox{-fuzzy } (r,s)\mbox{-closed set and } B^c \mbox{ is a } \mathcal{W}^{\mu\gamma}\mbox{-fuzzy } (u,v)\mbox{-closed set of } Y. \mbox{ By } (2), \mbox{ } f^{-1}(A^c) \mbox{ is a } (\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})\mbox{-double } (r,s)(u,v)\mbox{-semiclosed set of } X. \mbox{ But } f^{-1}(B^c) \mbox{ is a } (\mathcal{U}^{\mu\gamma},\mathcal{T}^{\mu\gamma})\mbox{-double } (u,v)(r,s)\mbox{-semiclosed set of } X. \mbox{ But } f^{-1}(A^c) = f^{-1}(A)^c \mbox{ and } f^{-1}(B^c) = f^{-1}(B)^c. \mbox{ By Theorem 3.2 and Corollary 3.3, } f^{-1}(A) \mbox{ is } (\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})\mbox{-double } (r,s)(u,v)\mbox{-semiopen and } f^{-1}(B) \mbox{ is } (\mathcal{U}^{\mu\gamma},\mathcal{T}^{\mu\gamma})\mbox{-double } (u,v)(r,s)\mbox{-semiopen and } f^{-1}(B) \mbox{ is } (r,s)(u,v)\mbox{-semicontinuous mapping.} \end{array}$

(2) \Rightarrow (3) Let *A* be any intuitionistic fuzzy set of *Y*. Then $\mathcal{V}^{\mu\gamma}$ -cl(*A*, *r*, *s*) is a $\mathcal{V}^{\mu\gamma}$ -fuzzy (*r*, *s*)-closed set and $\mathcal{W}^{\mu\gamma}$ -cl(*A*, *u*, *v*) is a $\mathcal{W}^{\mu\gamma}$ -fuzzy (*u*, *v*)-closed set of *Y*. By (2), $f^{-1}(\mathcal{V}^{\mu\gamma}$ -cl(*A*, *r*, *s*)) is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (*r*, *s*)(*u*, *v*)-semiclosed set and $f^{-1}(\mathcal{W}^{\mu\gamma}$ -cl(*A*, *u*, *v*)) is a $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (*u*, *v*)(*r*, *s*)-semiclosed set of *X*. By Theorem 3.2 and Corollary 3.3,

$$f^{-1}(\mathcal{V}^{\mu\gamma}\text{-}\mathrm{cl}(A, r, s))$$

$$\supseteq \mathcal{U}^{\mu\gamma}\text{-}\mathrm{int}(\mathcal{T}^{\mu\gamma}\text{-}\mathrm{cl}(f^{-1}(\mathcal{V}^{\mu\gamma}\text{-}\mathrm{cl}(A, r, s)), r, s), u, v)$$

$$\supseteq \mathcal{U}^{\mu\gamma}\text{-}\mathrm{int}(\mathcal{T}^{\mu\gamma}\text{-}\mathrm{cl}(f^{-1}(A), r, s), u, v)$$

and

f

$$\begin{array}{l} {}^{-1}(\mathcal{W}^{\mu\gamma}\text{-}\mathrm{cl}(A,u,v)) \\ \supseteq \mathcal{T}^{\mu\gamma}\text{-}\mathrm{int}(\mathcal{U}^{\mu\gamma}\text{-}\mathrm{cl}(f^{-1}(\mathcal{W}^{\mu\gamma}\text{-}\mathrm{cl}(A,u,v)),u,v),r,s) \\ \supseteq \mathcal{T}^{\mu\gamma}\text{-}\mathrm{int}(\mathcal{U}^{\mu\gamma}\text{-}\mathrm{cl}(f^{-1}(A),u,v),r,s). \end{array}$$

 $(3) \Rightarrow (4)$ Let C be an intuitionistic fuzzy set of X. Then f(C) is an intuitionistic fuzzy set of Y. By (3),

$$f^{-1}(\mathcal{V}^{\mu\gamma}\text{-}\mathrm{cl}(f(C), r, s)) \supseteq \mathcal{U}^{\mu\gamma}\text{-}\mathrm{int}(\mathcal{T}^{\mu\gamma}\text{-}\mathrm{cl}(f^{-1}f(C), r, s), u, v)$$
$$\supseteq \mathcal{U}^{\mu\gamma}\text{-}\mathrm{int}(\mathcal{T}^{\mu\gamma}\text{-}\mathrm{cl}(C, r, s), u, v)$$

and

$$f^{-1}(\mathcal{W}^{\mu\gamma}\text{-}\mathrm{cl}(f(C), u, v)) \supseteq \mathcal{T}^{\mu\gamma}\text{-}\mathrm{int}(\mathcal{U}^{\mu\gamma}\text{-}\mathrm{cl}(f^{-1}f(C), u, v), r, s)$$
$$\supseteq \mathcal{T}^{\mu\gamma}\text{-}\mathrm{int}(\mathcal{U}^{\mu\gamma}\text{-}\mathrm{cl}(C, u, v), r, s).$$

Thus we have

Double semiopen sets on double bitopological spaces

$$\mathcal{V}^{\mu\gamma}\text{-}\mathrm{cl}(f(C), r, s) \supseteq ff^{-1}(\mathcal{V}^{\mu\gamma}\text{-}\mathrm{cl}(f(C), r, s))$$
$$\supseteq f(\mathcal{U}^{\mu\gamma}\text{-}\mathrm{int}(\mathcal{T}^{\mu\gamma}\text{-}\mathrm{cl}(C, r, s), u, v))$$

and

$$\mathcal{W}^{\mu\gamma}\operatorname{-cl}(f(C), u, v) \supseteq ff^{-1}(\mathcal{W}^{\mu\gamma}\operatorname{-cl}(f(C), u, v))$$
$$\supseteq f(\mathcal{T}^{\mu\gamma}\operatorname{-int}(\mathcal{U}^{\mu\gamma}\operatorname{-cl}(C, u, v), r, s)).$$

(4) \Rightarrow (2) Let A be any $\mathcal{V}^{\mu\gamma}$ -fuzzy (r, s)-closed set and B any $\mathcal{W}^{\mu\gamma}$ -fuzzy (u, v)-closed set of Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are intuitionistic fuzzy sets of X. By (4),

$$f(\mathcal{U}^{\mu\gamma}\operatorname{-int}(\mathcal{T}^{\mu\gamma}\operatorname{-cl}(f^{-1}(A), r, s), u, v))$$

$$\subseteq \mathcal{V}^{\mu\gamma}\operatorname{-cl}(ff^{-1}(A), r, s)$$

$$\subseteq \mathcal{V}^{\mu\gamma}\operatorname{-cl}(A, r, s)$$

$$= A$$

and

$$f(\mathcal{T}^{\mu\gamma}\operatorname{-int}(\mathcal{U}^{\mu\gamma}\operatorname{-cl}(f^{-1}(B), u, v), r, s))$$

$$\subseteq \mathcal{W}^{\mu\gamma}\operatorname{-cl}(ff^{-1}(B), u, v)$$

$$\subseteq \mathcal{W}^{\mu\gamma}\operatorname{-cl}(B, u, v)$$

$$= B.$$

So we have

$$\mathcal{U}^{\mu\gamma}\operatorname{-int}(\mathcal{T}^{\mu\gamma}\operatorname{-cl}(f^{-1}(A), r, s), u, v)$$

$$\subseteq f^{-1}f(\mathcal{U}^{\mu\gamma}\operatorname{-int}(\mathcal{T}^{\mu\gamma}\operatorname{-cl}(f^{-1}(A), r, s), u, v))$$

$$\subseteq f^{-1}(A)$$

and

$$\mathcal{T}^{\mu\gamma}\operatorname{-int}(\mathcal{U}^{\mu\gamma}\operatorname{-cl}(f^{-1}(B), u, v), r, s)$$
$$\subseteq f^{-1}f(\mathcal{T}^{\mu\gamma}\operatorname{-int}(\mathcal{U}^{\mu\gamma}\operatorname{-cl}(f^{-1}(B), u, v), r, s))$$
$$\subseteq f^{-1}(B).$$

Thus $f^{-1}(A)$ is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiclosed set and $f^{-1}(B)$ is a $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiclosed set of X. \Box

References

 K. T. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and Systems **20** (1986), 87-96.

[2] C. L. Chang, *Fuzzy topological spaces*, J. Math. Anal. Appl. **24** (1968), 182-190.

Eun Pyo Lee and Seung On Lee

- K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, Gradation of openness : Fuzzy topology, Fuzzy Sets and Systems 49 (1992), 237-242.
- [4] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81-89.
- [5] D. Çoker and M. Demirci, An introduction to intuitionistic fuzzy topological spaces in Šostak's sense, BUSEFAL 67 (1996), 67-76.
- [6] D. Çoker and A. Haydar Eş, On fuzzy compactness in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 3 (1995), 899-909.
- [7] H. Gürçay, D. Çoker, and A. Haydar Eş, On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 5 (1997), 365-378.
- [8] A. Kandil, Biproximities and fuzzy bitopological spaces, Simon Stevin 63 (1989), 45-66.
- [9] E. P. Lee and S. O. Lee, Fuzzy intuitionistic almost (r, s)-continuous mappings, Journal of The Chungcheong Mathematical Society 26 (2013), 125-135.
- [10] S. O. Lee and E. P. Lee, Fuzzy pairwise (r, s)-irresolute mappings, International Journal of Fuzzy Logic and Intelligent Systems **9** (2009), 105-109.
- [11] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371-375.
- [12] A. P. Šostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Janos Palermo, Sr. II 11 (1985), 89-103.

*

Department of Clinical Laboratory Science Seonam University Namwon 590-711, Republic of Korea *E-mail*: eplee55@nate.com

**

Department of Mathematics Chungbuk National University Cheongju 361-763, Republic of Korea *E-mail*: solee@chungbuk.ac.kr